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Abstract. We derive a closed-form expression for the Green function of linear evolution equations
with the Dirichlet boundary condition for an arbitrary region, based on the singular perturbation
approach to boundary problems.

1. Introduction

The boundary value problem for linear operators in non-trivial regions leads to complications,
and quite often it is necessary to resort to numerical analysis even for the simplest operators
which possess a known kernel in the whole space, such as the Laplace operator inRn [1], for
example.

The possibility of a new approach to these problems appeared along with the development
of the theory of point interactions in quantum mechanics, first stimulated by the famous Kronig–
Penney model [2], and systematically investigated in [3] where self-adjoint extensions for a
Hamiltonian with point-like interactions were constructed so that the explicit form of the
resolvent was obtained for some physically significant systems. It had already been pointed
out in [3] that the limiting case of an infinitely strong point interaction allows one effectively to
split the space into two separate regions which leads to two boundary problems on the half-line.

This important trick was successfully developed in [4–6] and it allows one to write down
the explicit expressions for the Green function of the Schrödinger equation for a particle in
one-dimensional and radial boxes with Dirichlet and Neumann boundary conditions, provided
the appropriate problem in the whole space has been solved. The technique that has been
successfully used for such a derivation is a direct summation of perturbation series (the Dyson
series [7]), effectively leading to geometrical progression due to the specific form of the
perturbation. We would like to stress here that numerous analytical results obtained up to now
are related to quantum one-dimensional problems (such as Krein’s formula [3], for example),
effective one-dimensional problems after separation of variables (the ‘radial problem’), and
point-like interactions (see [3, 8] and the recent book [9] for detailed references which include
both solvableδ-perturbation cases and boundary value problems).

The question that naturally arises here is whether it is possible to generalize these
constructions to higher-dimensional boundary problems. As we shall see, and this will be the
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main aim of this paper, it can be done at least for Dirichlet boundary conditions for arbitrary
linear evolution operators in a topologically trivial region (homeomorphic to a ball in Rd ), with
the assumption that some natural conditions for the propagator of the ‘free particle’ are fulfilled.
It is worthwhile mentioning here that we intend neither to construct the self-adjoint extension
of the appropriate singular perturbed operators [3], nor to perform a detailed investigation of
the convergence properties of the appropriate perturbation series (as is well known the answer
may be negative even for regular perturbations, see [7], for example). In contrast, we propose
to construct the Green function for the non-separable case explicitly, and to demonstrate its
validity by known examples. Generally speaking, the problem we will solve can be formulated
on an abstract level of the theory of linear operators by introducing some generalization of
the projector operators, but we expect that this would only shadow the simple foundation of
the approach we use. Moreover, although the manipulations with perturbation series and the
subsequent limit of infinitely large coupling constant are admittedly rather formal, we do not
know of another way of obtaining the Green-function representation for the general boundary
problem which we will construct in this paper.

2. Series summation for a singular perturbed system

Let us have a linear evolution equation in Rd of the form(
∂

∂t
− L̂

)
9(x) = 0 (1)

with the explicitly time-independent operatorL̂ acting on the function defined over Rd and
obeying the Dirichlet boundary condition9(x)|0 = 0, where0 = {x : P(x) = 0} is the
boundary (hypersurface) of the regionB under consideration, in which we seek the solutions
of equation (1).

We start from consideration of the ‘free particle’, omitting the boundary condition, and
assuming that the propagator for that case, given by

K0(x′,x′′; t) = 〈x′′|eL̂t |x′〉θ(t) (2)

is already known. Hereθ is the Heaviside unit step function, incorporated into (2) to ensure the
causality propertyK(x′,x′′; t) = 0, whent < 0. The propagatorK possesses the composition
property

K(x′,x′′; t) =
∫
Rd

dx1K(x
′,x1; t1)K(x1,x

′′; t − t1) (3)

which follows from the semi-group property with respect to time evolution, which in turn is
automatically fulfilled for an explicitly time-independent operatorL̂ and the decomposition of
unity in an appropriate functional space, namely

Id =
∑
x

|x〉〈x| (4)

where summation (integration) is performed over a discrete (continuous) index enumerating
states (see, e.g, [7]). These properties are natural for most of physically significant models, so
our consideration is not very restrictive.

Now we will emulate the boundary condition by introducing in (1) the additional singular
potential term of the formV δ = −γ δP (x). The generalizedδ-function used here is a
distribution concentrated on the hypersurfaceP [10]. In the limiting case ofγ → ∞ the
corresponding one-dimensional problem turns out to be a Dirichlet boundary problem on the
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half-line [3] (see the discussion in introduction). We will demonstrate explicitly that the same
situation occurs for higher dimensions.

We will use the method expounded in [3–6, 11], performing a perturbation expansion,
starting from the formula for the propagator of the singular perturbed problem

K(x′,x′′; t) = 〈x′′|e(L̂+V δ)t |x′〉θ(t). (5)

The formal perturbation series over powers ofV δ can be constructed as in quantum
mechanics [12], and reads

Kδ(x′,x′′; t) = K0(x′,x′′; t) +
∞∑
n=1

γ n

t∫
0

dt1

∫
Rd

dx1K
0(x′,x1; t1− 0)δP (x1)

×
n∏
j=2

[ t∫
0

dtj

∫
Rd

dxj K0(xj−1,xj ; tj − tj−1)δP (xj )

]
K0(xn,x

′′; t − tn). (6)

The convergence questions appearing at this moment should be treated separately for every
problem considered, e.g., for the Schrödinger equation the existence of a well-defined Green
function has been proved rigorously in some cases [3]. For an arbitrary linear evolution
equation we must remain only at the formal level to go further.

After performing the Laplace transformation for the Green function, defined by

G(x′,x′′;E) =
∞∫

0

e−EtK(x′,x′′; t) dt (7)

the following series representation can be written:

Gδ(x′,x′′;E) = G0(x′,x′′;E) +
∞∑
n=1

γ n
∫
Rd

dx1G
0(x′,x1;E)δP (x1)

×
n∏
j=2

[∫
Rd

dxj G0(xj−1,xj ;E)δP (xj )
]
G0(xn,x

′′;E). (8)

The behaviour ofG0(x′,x′′;E) for coincident space arguments in spaces withd > 2
may lead to the divergence of the integrals in (8), but we will not discuss this in detail, since
the appropriate procedures for regularization are well known (for point-like perturbations in
quantum mechanics, see [3, 11], for example). We only point out that for most interesting
cases of two- and three-dimensional quantum problems there are no singularities within our
approach, in contrast to the models described in [11]. Indeed, the short-distance behaviour of
the Green function ind-dimensional spaces [9, f.6.2.1.2] is

G(x′, x′′, k) ∝ |x′ − x′′|1−d/2Y1−d/2(k|x′ − x′′|) (9)

whereYn(x) is the Bessel function [13], so that the relevant underlying singularities are
integrable ford = 2, 3. For higher dimensions and/or another operatorL, some sort of
regularization should be used as, e.g., in [11].

Returning to our problem, we can now introduce new coordinates by the mapF : x =
{x1, . . . , xd} 7→ y = {y1, . . . , yd} with the JacobianJ = (y1,...,yd )

(x1,...,xd )
so that the equation of

hypersurfaceP will be given byyd = η (see e.g., [10]). We designate all coordinates except
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the last one, i.e.{yi : i = 1, . . . , d − 1}, by�, so thaty = {�, yd}. Then, the integrations
over theδ-functions are simply projections on the submanifold, defined byyd = η, and we get

Gδ(x′,x′′;E) = G0(x′,x′′;E) +
∞∑
n=1

γ n
∫
P

√
g1d�1G

0(�′, (yd)′, �1, η;E)

×
n∏
j=2

[∫
P

√
gjd�j G

0(�j−1, η,�j , η;E)
]
G0(�n, η,�

′′, (yd)′′;E) (10)

where the integration is performed over the hypersurfaceP , g = det(gµν), gµν = ∂xµ

∂yν

∣∣
P

is an
induced metric tensor onP and we introduce coordinates�, yd corresponding to the initial
and final pointsx′,x′′. Now we want to expand the Green functionG0(�j−1, η,�j , η;E) in
a series of functions defined onP . Let us choose an appropriate full (complete) orthonormal
system of functions{fκ(�)} on the boundary0 of the regionB, whereκ is some multi-index
enumerating the systemf , with a standardL2(�) scalar product

〈fκ, fκ ′ 〉 =
∫
�

√
g(�)f̄κ(�)fκ ′(�) d� = δκ,κ ′ . (11)

For example, the case of axially symmetric closed surfaces was recently treated by Prodan [14],
where the projection of the resolvent operator on such surfaces was investigated.

We representG0 in the form

G0(�′, ξ,�′′, η;E) =
∑
κ ′,κ ′′
Gκ ′,κ ′′(ξ, η;E)fκ ′(�′)f̄κ ′′(�′′) (12)

so that the coefficientGκ ′,κ ′′(ξ, η;E) is expressed as

Gκ ′,κ ′′(ξ, η;E) =
∫ √

g(�′)g(�′′)G0(�′, ξ,�′′, η;E)fκ ′(�′)f̄κ ′′(�′′) d�′ d�′′. (13)

Then, substituting (12) in (10) we get

Gδ(x′,x′′;E) = G0(x′,x′′;E) +
∞∑
n=1

γ n
∫
P

√
g1d�1

∑
κ ′,κ1

Gκ ′,κ1((yd)
′, η;E)

× fκ ′(�′)f̄κ1(�1)

n∏
j=2

[∫
P

√
gj d�j

∑
κj−1,κj

Gκj−1,κj (η, η;E)fκj−1(�j−1)f̄κj (�)

]

×
∑
κn,κ ′′
Gκn,κ ′′((yd)′′, η;E)fκn(�n)f̄κ ′′(�′′)

= G0(x′,x′′;E) + γ
∑

κ ′,κ1,κnκ ′′
Gκ ′,κ1((yd)

′, η;E)Gκn,κ ′′(η, (yd)′′;E)fκ ′(�′)f̄κ ′′(�′′)

×
[
δκ1,κn + γGκ1,κn (η, η;E) + γ 2

∑
κ2

Gκ1,κ2(η, η;E)Gκ2,κn (η, η;E) + · · ·
]

(14)

where we used the orthonormality of the functions (11). After summing the geometrical
progression, we obtain

Gδ(x′,x′′;E) = G0(x′,x′′;E) +

(∑
κ ′,κ ′′

[
G((yd)′, η;E)(γ−1− G(η, η;E))−1

×G(η, (yd)′′;E)
]
κ ′,κ ′′

fκ ′(�
′)f̄κ ′′(�′′)

)
. (15)
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For brevity of notation we used the matrix form within the square brackets, and(γG)n is an
ordinary matrix power. Taking the limitγ →∞ we finally get

Gδ(x′,x′′;E) = G0(x′,x′′;E)−
(∑
κ ′,κ ′′

[
G((yd)′, η;E)G(η, η;E)−1G(η, (yd)′′;E)

]
κ ′,κ ′′

× fκ ′(�′)f̄κ ′′(�′′)
)

(16)

which is the main result of our paper.

3. Discussion

As can easily be seen, the propagator (16) solves an appropriate Dirichlet boundary problem.
Indeed, the statement that the object constructed above satisfies the differential equation (1)
is evident from the construction and, if(yd)′ = η or (yd)′′ = η, i.e. if the initial or final
points are on a boundary, the term in the square brackets simply gives the free Green-function
expansion coefficient, and the whole sum becomes the free Green function cancelling the first
term in (16), which means that the Dirichlet boundary condition is obeyed.

It is worthwhile pointing out here that the spectrum of the system under consideration is
given by such values ofE thatG(η, η;E) is non-invertible. In the two-dimensional case the
multi-indexκ becomes an ordinary one and we obtain the condition of vanishing determinant

DetG(η, η;E) = 0. (17)

From the last equation it can easily be seen that our approach looks like an alternative to and
generalization of the boundary integral method [15, 16], where the spectrum of a 2D billiard
can be obtained based on an integral of the normal derivative of the Green function over the
boundary.

It is also easy to demonstrate that equation (16) leads to a known formula for the case of
separability of variables. Let us perform this explicitly for the 2D case of a quantum particle
in a circular region (0 = {x : |x| = R}). An appropriate formula for the Green function in
polar coordinates (r, φ) [4] (see also [17] for an alternative derivation) reads

G(x,x′;E) =
∞∑

m=−∞
Gl(r, r

′, E)eim(φ′−φ) (18)

Gl(r, r
′;E) = G0

l (r, r
′;E)− G

0
l (r
′, R;E)G0

l (R, r
′;E)

G0
l (R, R;E)

. (19)

A natural choice of family for the functions is of coursefm(φ) = exp{imφ}. Expanding
the free particle Green function in the same manner as in (18) and calculating the coefficient
of equation (12) one can see that

Gmm′(r, r ′;E) = G0
m(r, r

′;E)δmm′ (20)

so that the inversion of the matrix becomes trivial, and after substitution of (20) in (16),
equation (19) follows immediately. Similar arguments may be used for other separable
quantum problems.

Thus, we see that we have indeed successfully constructed the explicit representation
for the Green function of linear evolutional equations with the Dirichlet boundary condition,
based on the Green function in the whole space, thereby generalizing results already known
for separable cases in quantum mechanics.
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Equation (16) can be rewritten in a more formal way, introducing the series expansion of
Gδ(x′,x′′;E) in a manner like (12) forG0. Then

Gδκ ′κ ′′((yd)′, (yd)′′;E)
= Gκ ′κ ′′((yd)′, (yd)′′;E)−

[
G((yd)′, η;E)G(η, η;E)−1G(η, (yd)′′;E)

]
κ ′,κ ′′ (21)

or in operator notation

Ĝδ((yd)′, (yd)′′;E)= Ĝ((yd)′, (yd)′′;E)− Ĝ((yd)′, η;E)Ĝ(η, η;E)−1Ĝ(η, (yd)′′;E). (22)

The last expression is suitable for further formal manipulation in the case of the double
δ-perturbationV = γ (δ(yd − a) + δ(yd − b)), where the system is being ‘squeezed’ into
a narrow shella 6 η 6 b, simulating the quantization on a hypersurface in the limita → b

in a manner similar to [4] (see [4, equation 2.15]), but the detailed analysis will be published
elsewhere.

It should be mentioned that our approach can also be modified to be used for more
general perturbation of the form̃V δ = −γ h(x)δP (x) with arbitrary functionh. Then similar
arguments show that the only difference from the case considered above is that one should
change

√
g to
√
g h(�, η). Then, we should use another family of functions for the expansion,

or, rather than expand the Green function, it may be more convenient to perform a series
expansion of the product√
h(�; ξ)h(�′′, η)G0(�′, ξ,�′′, η;E) =

∑
κ ′,κ ′′
G̃κ ′,κ ′′(ξ, η;E)fκ ′(�′)f̄κ ′′(�′′) (23)

where the final formula becomes

G̃δ(x′,x′′;E) = G0(x′,x′′;E)−
∑
κ ′,κ ′′

fκ ′(�
′)f̄κ ′′(�′′)√

h(�′′, (yd)′)h(�′′, (yd)′′)

×
[
G̃((yd)′, η;E)G̃(η, η;E)−1G̃(η, (yd)′′;E)

]
κ ′,κ ′′

. (24)

Such a generalization may be useful for systems with a boundary whose initial shape is not very
convenient for the construction of the function family setfκ and where it is easy to perform
some transformations before using the proposed approach. In this case, after a transformation
to the new coordinates (and, e.g., accompanied by ‘local-time rescaling’ [18]), the initially
pureδ-function perturbation really transforms to a non-uniform one as discussed above.
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